Sains Malaysiana 53(5)(2024): 983-994
http://doi.org/10.17576/jsm-2024-5305-01
Unlocking Therapeutic Potential: Identifying
Small Molecule Inhibitors for SARS-COV-2 Variants' Main Protease (MPRO)
Through Molecular Docking Analysis
(Membuka Kunci Potensi Terapeutik: Mengenal Pasti Perencatan Molekul Kecil untuk Protease Utama (MPRO)
Varian SARS-COV-2 Melalui Analisis Dok Molekul)
CHONG YIE WOON1,2& NURUL
IZZA ISMAIL1,*
1School of Biological Sciences, Universiti Sains Malaysia,
11800 USM, Penang, Malaysia
2BiologicalDepartment of Chemistry, University of California Riverside, CA, USA
Diserahkan: 3
November 2023/Diterima: 8 April 2024
AbstraCT
Even with existing emergency drugs, the development of
safer and more effective drugs for the treatment of COVID-19 still needs to
continue. Virtual screening through a molecular docking approach is a powerful
way to discover potential compounds for new drug discovery. In this study, we
targeted SARS-CoV-2 wild-type major protease (MPro),
beta, lambda and omicron variants, to conduct a virtual screening with a
selection of 100 ligands from the PubChem database using AutoDock Vina software. Among the inhibitors that have been
identified are ten compounds consisting of ergotamine,
2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide], remetinostat, benzamidine, argifin, irinotecan, dihydroergotamine, telmisartan, bromocriptine, and cilengitide,
which exhibited the highest binding affinity. Interaction analysis through
BIOVIA Discovery Studio showed the binding and interaction modes between these
inhibitors and MPro residues of the
variant. This mainly refers to 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide] and remetinostat which consistently exhibit strong interactions
with MPro variants. This research provides
promising leads for the development of potential COVID-19 therapeutics. In
summary, targeting conserved MPro with
small molecule inhibitors provides a solid foundation for combating SARS-CoV-2
and its variants, holding promise for effective COVID-19 mitigation.
Keywords: COVID-19; molecular docking; MPro; remetinostat; 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide]
Abstrak
Walaupun dengan ubat kecemasan yang sedia ada, pembangunan ubat yang lebih selamat dan berkesan untuk rawatan COVID-19 masih perlu diteruskan. Penyaringan maya melalui pendekatan dok molekul merupakan satu cara yang terbaik untuk penemuan sebatian yang berpotensi bagi penemuan ubat baharu. Dalam kajian ini, kami menyasarkan protease utama (MPro) jenis liar SARS-CoV-2, beta, lambda dan varian omikron, untuk dijalankan saringan maya dengan pemilihan 100 ligan daripada pangkalan data PubChem menggunakan perisian AutoDock Vina. Antara perencat yang telah dikenal pasti adalah sepuluh sebatian terdiri daripada ergotamin, 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide], remetinostat, benzamidine, argifin, irinotecan, dihydroergotamine, telmisartan, bromocriptine dan cilengitide yang menunjukkan pertalian pengikatan tertinggi. Analisis interaksi melalui BIOVIA
Discovery Studio mendedahkan mod pengikatan dan interaksi antara perencat ini serta sisa MPro bagi varian tersebut. Ini terutamanya merujuk kepada 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide] dan remetinostat yang secara tekalnya menunjukkan interaksi yang kuat dengan varian MPro. Penyelidikan ini memberikan petunjuk yang berpotensi untuk pembangunan terapeutik COVID-19. Ringkasnya, menyasarkan MPro yang dipelihara dengan perencat molekul kecil menyediakan asas yang kukuh untuk memerangi SARS-CoV-2 dan variannya, memegang janji untuk mitigasi COVID-19 yang berkesan.
Kata kunci: COVID-19; dok molekul; MPro; remetinostat; 2,5-Dibenzyloxy-3-hydroxyligand-hexanedioic acid bis-[(2-hydroxy-indan-1-YL)-amide]
RUJUKAN
Adedeji, A.O. & Sarafianos, S.G. 2014. Antiviral drugs specific for
coronaviruses in preclinical development. Current Opinion in Virology 8:
45-53.
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R. & Hilgenfeld, R. 2003. Coronavirus main proteinase
(3CLpro) structure: Basis for design of anti-SARS drugs. Science 300(5626):
1763-1767.
Bosshard, H.R., Marti, D.N. & Jelesarov, I. 2004. Protein stabilization by salt bridges:
Concepts, experimental approaches and clarification of some misunderstandings. Journal
of Molecular Recognition 17(1): 1-16.
Brylinski, M. 2018. Aromatic interactions at the ligand–protein
interface: Implications for the development of docking scoring functions. Chemical
Biology & Drug Design 91(2): 380-390.
Bzówka, M., Mitusińska, K., Raczyńska, A., Samol, A., Tuszyński, J.A. & Góra,
A. 2020. Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor
design. International Journal of Molecular Sciences 21(9):
3099.
Chia,
C.B., Xu, W. & Shuyi Ng, P. 2022. A patent review
on SARS coronavirus main protease (3CLpro) inhibitors. ChemMedChem 17(1):
e202100576.
Duarte,
M., Pelorosso, F., Nicolosi,
L.N., Salgado, M.V., Vetulli, H., Aquieri,
A., Azzato, F., Castro, M., Coyle, J., Davolos, I., Fernandez Criado,
I., Gregori, R., Mastrodonato,
P., Rubio, M.C., Sarquis, S., Wahlmann,
F. & Rothlin, R.P. 2021. Telmisartan for treatment of COVID-19 patients: An open multicenter randomized clinical trial. EClinicalMedicine 37:
100962.
Flynn, J.M., Zvornicanin, S.N., Tsepal, T., Shaqra, A.M., Kurt Yilmaz, N., Jia,
W., Moquin, S., Dovala, D., Schiffer, C.A. & Bolon, D.N.A. 2023.
Contributions of hyperactive mutations in Mpro from
SARS-CoV-2 to drug resistance. ACS Infectious Diseases 10(4): 1174-1184.
Gentile, F., Yaacoub, J.C., Gleave, J., Fernandez, M., Ton, A.T., Ban, F., Stern, A.
& Cherkasov, A. 2022. Artificial
intelligence–enabled virtual screening of ultra-large chemical libraries with
deep docking. Nature Protocols 17(3): 672-697.
Govardhanagiri, S., Bethi,
S. & Nagaraju, G.P. 2019. Small molecules and
pancreatic cancer trials and troubles. In Breaking Tolerance to
Pancreatic Cancer Unresponsiveness to Chemotherapy, edited by Nagaraju, G.P. London: Academic Press. pp. 117-131.
Goyal, B. & Goyal, D. 2020.
Targeting the dimerization of the main protease of coronaviruses: A potential
broad-spectrum therapeutic strategy. ACS Combinatorial Science 22(6):
297-305.
Greasley, S.E., Noell, S., Plotnikova, O., Ferre, R., Liu,
W., Bolanos, B., Fennell, K., Nicki, J., Craig, T.,
Zhu, Y., Stewart, A.E. & Steppan, C.M. 2022.
Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. Journal of Biological Chemistry 298(6):
101972.
Gul, S., Ozcan, O., Asar, S., Okyar, A., Barıs, I. & Kavakli,
I.H. 2021. In silico identification of widely
used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and
viral RNA-dependent RNA polymerase inhibitors for direct use in clinical
trials. Journal of Biomolecular Structure and
Dynamics 39(17): 6772-6791.
Gurung, A.B., Ali, M.A., Lee, J., Farah, M.A. & Al-Anazi, K.M. 2020. In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors. Saudi Journal
of Biological Sciences 27(10): 2674-2682.
Hakmi, M., Bouricha, E.M., Kandoussi, I., El Harti, J. & Ibrahimi, A. 2020. Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease
using molecular docking analysis. Bioinformation 16(4):
301-306.
Higueruelo, A.P., Schreyer, A., Bickerton,
G.R.J., Pitt, W.R., Groom, C.R. & Blundell, T.L. 2009. Atomic interactions
and profile of small molecules disrupting protein–protein interfaces: The
TIMBAL database. Chemical Biology & Drug Design 74(5):
457-467.
Horowitz,
S. & Trievel, R.C. 2012. Carbon-oxygen hydrogen
bonding in biological structure and function. Journal of Biological
Chemistry 287(50): 41576-41582.
Hosseini,
M., Chen, W., Xiao, D. & Wang, C. 2021. Computational molecular docking and
virtual screening revealed promising SARS-CoV-2 drugs. Precision
Clinical Medicine 4(1): 1-16.
Huang, H.,
Zhang, G., Zhou, Y., Lin, C., Chen, S., Lin, Y., Mai, S. & Huang, Z. 2018.
Reverse screening methods to search for the protein targets of chemopreventive compounds. Frontiers in Chemistry 6: 138.
Hung,
Y.P., Lee, J.C., Chiu, C.W., Lee, C.C., Tsai, P.J., Hsu, I.L. & Ko, W.C. 2022. Oral Nirmatrelvir/Ritonavir
therapy for COVID-19: The dawn in the dark? Antibiotics 11(2): 220.
Hwang, J.,
Dial, B. E., Li, P., Kozik, M. E., Smith, M. D.,
& Shimizu, K. D. (2015). How important are dispersion interactions to the
strength of aromatic stacking interactions in solution? Chemical
Science, 6(7), 4358-4364.
Khalifa, H.O. & Al Ramahi, Y.M.
2024. After the hurricane: Anti-COVID-19 drugs development, molecular
mechanisms of action and future perspectives. International Journal of
Molecular Sciences 25(2): 739.
Khan,
S.L., Siddiqui, F.A., Jain, S.P. & Sonwane, G.M.
2021. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) main protease
(Mpro) from Nigella sativa (black seed) by molecular docking study. Coronaviruses 2(3):
384-402.
Kneller,
D.W., Phillips, G., O’Neill, H.M., Jedrzejczak, R., Stols, L., Langan, P., Joachimiak, A., Coates, L. & Kovalevsky, A. 2020.
Structural plasticity of SARS-CoV-2 3CL Mpro active
site cavity revealed by room temperature X-ray crystallography. Nature
Communications 11(1): 3202.
Lam, C. & Patel, P.
2023. Nirmatrelvir-Ritonavir. In StatPearls [Internet]. StatPearls Publishing.
Lee, J.,
Worrall, L.J., Vuckovic, M., Rosell,
F.I., Gentile, F., Ton, A.T., Cavaney, N.A., Ban, F., Cherkasov, A., Paetzel, M.
& Strynadka, N.C.J. 2020. Crystallographic
structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with
physiological C-terminal autoprocessing site. Nature
Communications 11: 5877.
Li, Z.,
Li, X., Huang, Y.Y., Wu, Y., Liu, R., Zhou, L., Lin, Y., Wu, D., Zhang, L.,
Liu, H., Xu, X., Yu, K., Zhang, Y., Cui, J., Zhan, C.G., Wang, X. & Luo,
H.B. 2020. Identify potent SARS-CoV-2 main protease inhibitors via accelerated
free energy perturbation-based virtual screening of existing drugs. Proceedings
of the National Academy of Sciences 117(44): 27381-27387.
Lovetrue, B. 2020. The AI-discovered aetiology of COVID-19 and
rationale of the irinotecan+ etoposide combination
therapy for critically ill COVID-19 patients. Medical Hypotheses 144:
110180.
Morse,
J.S., Lalonde, T., Xu, S. & Liu, W.R. 2020.
Learning from the past: possible urgent prevention and treatment options for
severe acute respiratory infections caused by 2019‐nCoV. Chembiochem. 21(5): 730-738.
Muppalaneni, N.B. & Rao, A.A. 2011. PDBToSDF:
Create ligand structure files from PDB file. Bioinformation 6(10):
383.
Nader, D.,
Fletcher, N., Curley, G.F. & Kerrigan, S.W. 2021. SARS-CoV-2 uses major
endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS ONE 16(6):
e0253347.
Nutho, B., Mahalapbutr,
P., Hengphasatporn, K., Pattaranggoon,
N.C., Simanon, N., Shigeta, Y., Hannongbua,
S. & Rungrotmongkol, T. 2020. Why are lopinavir and ritonavir effective against the newly emerged
coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry 59(18): 1769-1779.
Odhar, H.A., Ahjel, S.W., Albeer, A.A.M.A., Hashim, A.F., Rayshan, A.M. & Humadi, S.S.
2020. Molecular docking and dynamics simulation of FDA approved drugs with the
main protease from 2019 novel coronavirus. Bioinformation 16(3):
236-244.
Ordog, R., Szabadka, Z. & Grolmusz, V. 2009. DECOMP: A PDB decomposition tool on the
web. Bioinformation 3(10): 413-414.
Pang, X., Xu, W., Liu, Y., Li, H. & Chen, L. 2023. The research
progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. European
Journal of Medicinal Chemistry 257: 115491.
Rothlin, R.P., Duarte, M., Pelorosso,
F.G., Nicolosi, L., Salgado, M.V., Vetulli, H.M. & Spitzer, E. 2021. Angiotensin receptor
blockers for COVID-19: Pathophysiological and pharmacological considerations
about ongoing and future prospective clinical trials. Frontiers in
Pharmacology 12: 603736.
Saluja, H., Mehanna,
A., Panicucci, R. & Atef,
E. 2016. Hydrogen bonding: Between strengthening the crystal packing and
improving solubility of three haloperidol derivatives. Molecules 21(6):
719.
Santos-Filho, O.A., Eynde, J.J.V., Mayence, A. & Huang, T.L. 2020. Evaluation of aryl amidines/benzimidazoles as
potential anti-COVID-19 agents: A computational study.
https://doi.org/10.3390/ECMC2020-07288
Shah, B.,
Modi, P. & Sagar, S.R. 2020. In silico studies on therapeutic agents for COVID-19: Drug
repurposing approach. Life Sciences 252: 117652.
Steiner,
T. 2002. The hydrogen bond in the solid state. Angewandte Chemie International Edition 41(1): 48-76.
Steiner,
T. & Desiraju, G.R. 1998. Distinction between the
weak hydrogen bond and the van der Waals interaction. Chemical
Communications 8: 891-892.
ul Qamar, M.T., Alqahtani,
S.M., Alamri, M.A. & Chen, L.L. 2020. Structural
basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal
plants. Journal of Pharmaceutical Analysis 10(4): 313-319.
Vatansever, E.C., Yang, K.S., Drelich,
A.K., Kratch, K.C., Cho, C.C., Kempaiah,
K.R., Hsu, J.C., Mellott, D.M., Xu, S., Tseng, C-T.K.
& Liu, W.R. 2021. Bepridil is potent against
SARS-CoV-2 in vitro. Proceedings of the National Academy of Sciences 118(10): e2012201118.
Wade, R.C.
& Goodford, P.J. 1989. The role of hydrogen-bonds
in drug binding. Progress in Clinical and Biological Research 289:
433-444.
Xiang, R.,
Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang,
R., Hao, Q., Ying, T., Gao, Y., Yu, F. & Jiang,
S. 2022. Recent advances in developing small-molecule inhibitors against
SARS-CoV-2. Acta Pharmaceutica Sinica B 12(4): 1591-1623.
Xie, N.Z., Du, Q.S., Li, J.X. & Huang, R.B. 2015. Exploring
strong interactions in proteins with quantum chemistry and examples of their
applications in drug design. PLoS ONE 10(9):
e0137113.
Xiong, R., Zhang, L., Li, S., Sun, Y., Ding, M., Wang, Y., Zhao,
Y., Wu, Y., Shang, W., Jiang, X., Shan, J., Shen, Z., Tong, Y., Xu, L., Chen, Y.,
Liu, Y., Zou, G., Lavillete, D., Zhao, Z., Wang, R.,
Zhu, L., Xiao, G., Lan, K., Li, H. & Xu, K. 2020. Novel and potent
inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses
including newly-emerged coronavirus SARS-CoV-2. Protein & Cell 11(10):
723-739.
Yuce, M., Cicek, E., Inan, T., Dag, A.B., Kurkcuoglu,
O. & Sungur, F.A. 2021. Repurposing of
FDA‐approved drugs against active site and potential allosteric
drug‐binding sites of COVID‐19 main protease. Proteins:
Structure, Function, and Bioinformatics 89(11): 1425-1441.
Yunta, M.J. 2017. It is important to compute intramolecular
hydrogen bonding in drug design. Am. J. Model. Optim. 5(1):
24-57.
Zhang, L.,
Lin, D., Sun, X., Curth, U., Drosten,
C., Sauerhering, L., Becker, S., Rox,
K. & Hilgenfeld, R. 2020. Crystal structure of
SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):
409-412.
Zheng, J.,
Zhang, Y., Zhao, H., Liu, Y., Baird, D., Karim, M.A., Ghoussaini,
M., Schwartzentruber, J., Dunham, I., Elsworth, B., Roberts, K., Compton, H., Miller-Molloy, F.,
Liu, X., Wang, L., Zhang, H., Smith, G.D. & Gaunt, T.R. 2020.
Multi-ancestry Mendelian randomization of omics traits revealing drug targets
of COVID-19 severity. eBioMedicine 81:
104112. https://doi.org/10.1016/j.ebiom.2022.104112
*Pengarang untuk surat-menyurat; email: nurul.ismail@usm.my
|